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ABSTRACT 

For whistlers in bounded magnetoplasmas, a paradox has been pointed 

out by Wieder. His work shows that, below half the electron cyclotron 

frequency, the wave propagation characteristics do not approach those of 

plane wave solutions in unbounded magnetoplasma, even when the plasma 

density is increased so that the wavelength is arbitrarily small compared 

to the plasma transverse dimensions. In this paper, the apparent paradox 

is shown to result from the double reflection property of magnetoplasmas. 

Propagation characteristics in bounded plasma have been related to the 

unbounded case by considering plane waves doubly reflected at the plasma 

boundary. As a by-product, limitations for the validity of the quasistatic 

approximation for body waves in bounded magnetoplasmas have been established 

* 
This work was supported by the National Aeronautics and Space Administra- 
tion. 
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1. INTRODUCTION 

Slow right-hand polarized electromagnetic waves propagating in a 

magnetoplasma, parallel to the static magnetic field, are known in mag- 

netospheric terminology as "whistlers." In the magnetosphere, where the 

plasma dimensions are very large compared with a whistler wavelength, and 

with the scale lengths of electron density and static magnetic field in- 

homogeneities, ray tracing techniques can be used to describe the propa- 

gation characteristics (Helliwell 1965). In a laboratory plasma, however, 

or in a field-aligned column of enhanced ionization in the magnetosphere, 

the effects of the plasma boundaries may be important in determining the 

propagation characteristics of these waves. It is this topic which forms 

the subject of the present paper. 

A few boundary value problems for homogeneous plasma columns in a 

uniform axial magnetic field have been solved numerically, using the full 

Maxwell equations (Gould 1961, Formato and Gilardini 1962, Wieder 1964, 

Hedvall and Sjbgren 1965. By comparing wave properties in bounded and 

unbounded magnetoplasmas, it has been found that the presence of sharp 

boundaries changes the wave dispersion drastically for certain ranges of 

parameters, sometimes beyond recognition from that prevailing in the un- 

bounded case. For example, Wieder' (1964) examined the properties of cir- 

cularly symmetrical waves propagating in a dense, homogeneous, collision- 

less plasma, immersed in a uniform magnetic field and bounded by a conduct- 

ing wall. He found that, below electron cyclotron resonance, an infinite 

number of propagating modes are possible. m e n  the wavelength becomes 

much smaller than the transverse dimensions of the plasma, the dispersion 

characteristics of these waves approach those of the corresponding plane 

whistler waves only if the frequency is above about half the electron 

cyclotron frequency. By intuition based on waveguide theory, however, 

one might expect the dispersion characteristics of the waves to approach 

those of the corresponding plane waves for all frequencies below the cyclo- 

tron frequency, in the limit of small wavelength. A way out of the diffi- 

culty was found by Hedvall and SjGgren (1965), who solved a boundary value 

problem for an infinite plasma slab numerically, including collisions. 

They showed that by making the collision frequency sufficiently large, 
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the dispersion characteristics for waves below half the cyclotron frequency 

would approach those of plane whistler waves in an infinite plasma, pro- 
vided the electron plasma frequency is adjusted so that the wavelengths 

are small compared to the plasma transverse dimensions. 

avoids the paradox discovered by Wieder, it does not explain it. In what 

follows, our main purpose will be to do so. 

Although this 

Of the numerous papers concerned with waves propagating through bound- 

ed magnetoplasmas, the majority employ the quasistatic approximation (Smul- 

lin and Chorney 1958, Trivelpiece and Gould 1959). In this approximation, 

the RF magnetic field is neglected (V x E x O ) ,  so that the RF electric 
field can be simply derived from a scalar potential. The quasistatic ap- 

proximation greatly simplifies the numerical solution of the corresponding 

dispersion relations. The original justification for the quasistatic ap- 

proximation, as described by Trivelpiece and Gould, was the slowness of 

the phase velocity, so that retardation effects can be neglected. This 

justification is not always satisfactory, since plane wave whistlers in 

unbounded plasmas are slow waves, yet they cannot be derived from quasi- 

h( 

static theory. On the other hand, phase velocities comparable to, or even 

greater than the velocity of light have been predicted by the quasistatic 

theory, which turned out to be very good approximations (Bevc 1966). 

Since there should, in general, be a generic relationship between 

waves in bounded and unbounded media, the investigation of this relation- 

ship is important. In the work to be described, this relationship for 

whistlers in bounded and unbounded magnetoplasma is elucidated by consid- 

eration of double reflections at the boundaries. In particular, the para- 

dox raised by Wieder is resolved, and the conditions for the validity of 

the quasistatic approximation are established, 

as follows: In Section 2 ,  we will consider the double reflection at a 

The plan of this paper is 

general dielectric-plasma boundary for plane whistlers propagating at an 

angle to the magnetic field. In Section 3, the computed results for the 

angles of reflection and reflection coefficients are given. They are used 

to explain Wieder's paradox, and to indicate the limitations of the quasi- 

static approximation in bounded magnetoplasmas. 

the results is given in Section 4. 

A general discussion of 
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2.  DOUBLE REFIlECTIONS 

2.1 Whistlers Propagating at an Angle to the Magnetic Field 

In a transversely bounded plasma, plane whistlers cannot propagate 

exactly along the boundary because of the circularly polarized nature of 

the wave. The dispersion relations for the two characteristic planewaves 

propagating in an arbitrary direction, in an infinite homogeneous cold 

plasma, in a uniform steady magnetic field, 

Hartree equation (Budden 1961). 
Bo, are given by the Appleton- 

where 1-1 is the refractive index; c is the speed of light in free space; 

w is the signal frequency; k is the wavenumber; w is the electron 

plasma frequency; wc is the electron cyclotron frequency; v is the 

momentum transfer collision frequency, and 8 is the angle between the 

direction of propagation and the static magnetic field, 

P 

%* 
The dispersion relations of the different modes described by Eq. (1) 

can be conveniently characterized by their phase velocity surfaces, and a 

CMA diagram (Allis et a1 1963), as shown in Fig. 1. Phase velocity sur- 

faces are polar plots of the phase velocity in the plane containing Eo. 
A t  fixed values of the parameters w w one obtains in general twonon- 

intersecting phase velocity surfaces. These surfaces will change contin- 

uously as the parameters w w change, unless one passes through a point 

of resonance, 1-1 --$ 03; or  point of cutoff, 1-1 = 0. Region 8 of Fig. 1 is 

the region where the whistler is the only propagating mode. 

p' c' 

i 

P' c 

When 8 = 0, Eq. (1) reduces to 

3 



7 

Fig. 1. CMA DIAGRAM AND PHASE VELOCITY SURFACES. 
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Here the  p lus  and minus s igns  before  w correspond t o  the  l e f t -  and 

right-hand polar ized  waves. When 
C 

2 2  2 2 2 2 2  w w t a n  e s i n  e << 4 1 (w - i v w  - wP) I , C 

Eq. (1) reduces t o  

This  i s  the  w e l l  known "quasi-longitudinal" approximation (Budden 1961). 

For l a r g e  wp/w , the above approximation is good over a l a rge  range of 

6. When the  condi t ion of Eq. (3) is  s a t i s f i e d ,  the  wave po la r i za t ion  is 

near ly  c i r c u l a r ,  so  t h a t  t he  approximation is sometimes ca l l ed  "quasi- 

c i r cu la r "  ( A l l i s  e t  a l ,  1963). 

2 2  

2.2 Refract ive Index Surfaces and Resonance Cones 

By r o t a t i n g  the  curve of r e f r a c t i v e  index vs. 8 about the  d i r e c t i o n  - 
of the  s t a t i c  magnetic f i e l d ,  t he  r e f r a c t i v e  index sur face  is generated. 

The po la r  p l o t  of t h e  r e f r a c t i v e  index i n  Fig. 2 shows sec t ions  of t w o  

d i s t i n c t  sur faces  obtained f o r  

2 w2 - 2w 2 p  P 

"c 2(WZ - w2) ' 
( 5 )  

r e spec t ive ly  (Clemmow and Mullaly 1955). 

is  obtained. 'res By s e t t i n g  k = a i n  Eq. (1) , the  resonance cone, 

This y i e l d s  
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FIG. 2. WHISTLER RFZRACTIVE INDEX SURFACES. 
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For v = 0, and 

resonance angle, 

under the usual whistler condition w >> w > w, the P C 
is real, and is given by 'res' 

Under the quasi-longitudinal condition (Eq. (3)), the resonance angle is 

given by 

-1 f/2 e,,, = cos . 

The refractive index surface in Fig. 1 is contained within the resonance 

cone. The re$onance cone is very thin (eres+ 0) near cyclotron reso- 

nance, and widens as wc/w increases. For w /w = 4.3, the resonance 

angle is about 60° .  Beyond the resonance angle, the wave is essentially 

evanescent. Near the resonance cone, the wave will be heavily damped, 

as can be seen from Eq. (4) for the whistler mode. Typical solutions of 

Eq. (6) for v = 0 are shown in Fig. 3. 

C 

2.3 Generalized Snell's Law 

Consider a plane horizontal boundary between a semi-infinite homoge- 

neous magnetoplasma and a semi-infinite dielectric, as shown in Fig. 4. 

Let a plane wave be incident obliquely on the boundary from the plasma 

side, with its wave-normal in the x-z plane at an angle eI to the 
z-axis. Then any field component of this wave is given by 

Because of the birefringent nature of the magnetoplasma, in general there 

will be two reflected waves in the plasma and a transmitted wave in the 
and 8, to the dielectric, with their wave-normals at angles 

z-axis respectively. The field components, ;, of these waves are given 
by : 

%1' %2' 
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47421 

Fig. 4. REFLECTION AND REFRACTION OF A PLANE WAVE 
AT A SHARP MAGNETOPLASMA BOUNDARY. 
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Reflected waves: 

Transmitted waves: 

where pd is the refractive index of the dielectric. 
Since the field components for both sides of the boundary must be in 

phase over the whole y-z plane, i.e., for x = 0 ,  we must have 

eT Equation (12) is the generalized Snell's law. By its application, 

can be found easily when ElI is known. For & parallel to the z-axis, 

we can let one of the two reflection angles be equal to 

flected wave will be called the "principal" reflected wave. 

other reflected wave, which we shall term the "secondary" reflected wave, 

the Booker quartic is used to find the angle (Budden 1961). 

GI. This re- 

For the 

2.4 The Booker Quartic 

On the plasma side of the boundary, let 

The quantity q, determining the field variations in the x-direction, 

was first introduced into magneto-ionic theory by Booker, and it plays 

an important part in the theory of radio wave propagation in the iono- 

sphere, 

erties of the medium, and is, in general, a quartic. When the static mag- 

netic field is parallel to the boundary plane, and in the plane of 

incidence, the quartic reduces to a biquadratic equation, 

The equation governing this quantity depends solely on the prop- 
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where 

2 

y = - 2  

a 

I n  a s tudy of waves on an e l ec t ron  beam, Hahn (1939) a r r ived  a t  the  same 

equat ion f o r  t h e  separa t ion  constants  i n  c y l i n d r i c a l  coordinates.  

The fou r  so lu t ions  of t h e  q u a r t i c  equation spec i fy  four  waves. Two 

so lu t ions  represent  waves t r a v e l l i n g  towards t h e  in t e r f ace ;  t he  o ther  two 

represent  waves t r a v e l l i n g  away from the  i n t e r f a c e  i n t o  the  plasma. A l l  

four  waves a r e  t r a v e l l i n g  i n  the  pos i t i ve  z-direct ion.  From Poynting 

vec tor  cons idera t ions ,  only the  l a t t e r  p a i r  of so lu t ions  a r e  of i n t e r e s t .  

2 .5  The Reflected and Refracted Fields  
~ 

To determine the  amplitude and phase of t he  r e f l ec t ed  waves i n  the 

plasma, and those of t h e  r e f r ac t ed  waves i n  the  i s o t r o p i c  d i e l e c t r i c  re- 

gion, we must match the  f i e l d  components i n  the  plasma s i d e  of t h e  in t e r -  

face.  With no su r face  cur ren t  i n  t h e  in t e r f ace ,  t h e  boundary conditions 

requi re  the  t angen t i a l  electric f i e l d ,  t he  normal displacement, and t h e  

t angen t i a l  and normal magnetic f i e l d s ,  t o  be continuous across  the  

in t e r f ace .  For t h e  inc ident  wave w e  have: 
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R ( B I )  w w s i n  8 COS e 
2 
P 

I cp ( e , )  - 11 - s i n  C I 

w(w - i v )  - w 

where B is the RF magnetic field. The electric field component perpen- 

dicular to the plane wave propagation direction has been normalized to 

unity. 

N 

Let rl and r2 be the reflection coefficients for the principal 
and secondary reflected waves in the plasma. The field components for 

the reflected waves are then given by, 

2 
R ( h )  uCw s i n  % 2  E& = rpIx + r b (eR2) - 1 

w(w - i v )  - w 
P 

2 

R2 1 wCw s i n  eR2 COS eR2 2 
2 Ip (eR2) - 11 - s i n  8 , 

w(w - i v )  - w 
P 

Em = TIEIy + r2 
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Because of the circularly polarized nature o f  the incident wave, we 

need both E-type (E field in the plane of the incident wave) and H-type 

(H field in the plane of the incident wave) "refracted" waves, in the 

isotropic dielectric. 

E-wave : 

= T COS 0 = T  
E T' 'Ty E ' ETz = - T s i n  eT, E 

(17) 

H-wave : 

Here, TE and TH are the transmission coefficients. Because of the 

high refractive index for the incident wave, the waves on the dielectric 

side are generally evanescent (total reflection). By assuming a rigid 

boundary, the reflection and transmission coefficients can be determined 

from the following boundary conditions: 

where the signs *'+'I and 'I -I '  refer to the fields immediately adjacent to 

the boundary on opposite sides of it. 

applying Faraday's law and Ampere's law to a rectangular loop enclosing 

the boundary. There are two other boundary conditions, namely continuity 

of normal magnetic field and discontinuity of electric flux density due 

to surface charge. These are equivalenttoEq. (19) fortheboundary 

considered here. 

These relations are obtained by 

13 



When these boundary conditions are applied to Eqs.  (15) through (18), 

we obtain 
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3, CALCULATIONS 

Starting with e,, the incident angle, b(f3,) is calculated from 
2 we determine q1 2 and q 2 

' 1  

2 
i 2  2 Eq. ( 1 ) .  Then, with S = p (e,) Cos GI, 

from Eq. (14) .  The two reflection angles are determined by trigonometri- 

cal relations in the complex domain. We may assume that the incident 

wave is a propagating wave (6, < ereS), 
real. With this assumption, a typical set of incident and reflected 

angle relations were calculated for f3 = LOo, and are shown in Fig. 5. 

Note that for v = 0, q2 changes sign at 

so that the incident angle is 

2 2  2 2  I 
w/wc = (wp - 2 w  ) /2(wp - w 1, 2 

or w/wc N 1/2 for w 2 2  /w >>I. This is consistent with the two distinctly 
P 

different refractive index surfaces shown in Fig. 2.  

For whistlers propagating at an angle to the magnetic field within 

the resonance cone, the refractive index, 

compared to unity. When p(6,) > pd, the angle of 'the refracted wave in 

the dielectric becomes complex and total reflection occurs. The two re- 

flection coefficients are in general complex. A set of typical values 
for I' calculated from Eq. (20) is given in Fig. 6. 

p(e,), is usually very large 

3.1 Explanation of Wieder's Paradox 

For frequencies above about wc/2, Irll is exactly equal to unity 

when collisions are neglected, and ]r21 is of order of unity. Since, 

then, the secondary reflected wave has very large imaginary transverse 

propagation constants, it is localized at the boundary. The secondary 

reflected wave is a whistler "propagating" at an imaginary angle. Another 

boundary placed more than a few skin-depths away (say LO), will not change 

the secondary reflected fields appreciably. Thus the primary reflected 

wave will be reflected back and forth between the boundaries, just as in 

an ordinary dielectric slab waveguide. This is illustrated in Fig. 7. 

Below about half the cyclotron frequency, the secondary reflected 

wave also propagates as a whistler, propagating at a larger real angle 

than the principal reflected wave. If another boundary is present, the 
effect of the secondary reflected wave cannot be neglected, no matter how 

far away the other boundary is located. 

15 
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u/w = 0 

I I I 
I 2 3 

wc/w wc /w 
47433 

(a) VACUUM - PLASMA INTERFACE 

u/w = 0.01 

I 2 3 4 1  2 3 
wc/w wc /w 

(b) CONDUCTOR-PLASMA INTERFACE 4743 I 

4 

Fig. 6. PRINCIPAL AND SECONDARY REFLECTION COEFFICIENTS FOR WHISTLER INCI- 
DENT AT AN ANGLE TO A SHARP MAGNETOPLASMA BOUNDARY [w2/w2 = 25, GI = 10'1 , 

P 
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Since in each reflection a new propagating wave is born, as shown in 
Fig. 7 (b), a spectrum of waves finally results. This explains the inter- 

the interference pattern manifested in the calculations of 

(1964). A few of his results are shown in Fig. 8 (a). If collisions or 

electron temperature are introduced into the plasma model, we see in Fig. 2 

that for small angles of incidence (grazing incidence), the primary reflec- 

ted wave will be far away from the resonance cone, and will suffer little 
damping. Since the secondary reflected wave propagates at an angle much 

closer to the resonance cone, it will suffer much heavier damping, as seen 

from Eq. (4). Thus, with enough collisions, the interference pattern 

should disappear. Furthermore, as the wavelength is made small compared 

with the width of the plasma slab, e.g., by increasing w the plane 

wave solution f o r  an unbounded plasma should be approached. This has been 

found by Hedvall and Sjbgren. One of their results f o r  ck/w is shown in 

Fig. 8 (b). 

ck/w by Wieder 

P’ 

3 . 2  Limitations of the Quasistatic Approximation 

A number of authors (Scharer and Trivelpiece 1965, Bevc 1967) have 

attempted to establish a general criterion for validity of the quasistatic 

approximation. By comparing a limited set of numerical calculations with 

the full Maxwell equations, and with the quasistatic approximation, it 

seemed that w a/c << 1 could be used as the criterion to justify the 

quasistatic approximation (Gould 1961), where a is the plasma column 

radius. Based on a quasistatic analysis of power flow, additional criteria 

for the extension of the quasistatic approximation were derived (Scharer 

and Trivelpiece 1965). However, Bevc (1966, 1967) claims that quasistatic 

calculations of power flow are unsatisfactory, and proposes to compare the 

laminar and solenoidal parts of the RF electric field as a criterion. It 

is true that in general 

P 

E = -  VJ, - iw,A , 
N 

and that when the quasistatic approximation is justified. 

However, A and $ are coupled, and the comparison can only be made after 

the full Maxwell equations are solved. This is not satisfactory, because 

the advantage of the quasistatic approximation has been to avoid using the 

19 full Maxwell equations. 

l V ~ , l /  IwA) >> 1, 

N 



w/w,  

(a )  Wieder's r e s u l t s  [ c i rcu lar  waveguide f i l l e d  w i t h  magnetoplasma, 
&?/$ = 100, awc/c = s ,  a is  plasma radius].  

P C  

I I 
I 2 

wa/c 

2 2  
(b) Hedvall and S j b g r e n ' s r e s u l t s  [plasma s l a b  i n  vacuum, 

awc/c = 2.4,  a is  plasma w i d t h ] .  
%/wc = 11, 

FIG. 8. WHISTLER DISPERSION CHARACTERISTICS IN BOUNDED MAGHETOPLASMA. 
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For a waveguide completely f i l l e d  with plasma i n  a uniform magnetic 

f i e l d ,  t h e r e  a r e  two groups of waves with s t rong  f i e l d  in s ide  the  plasma. 

These waves w i l l  be c a l l e d  body waves. For w > w one group of back- 

ward waves propagate i n  t h e  band between t h e  hybrid frequency, 
P c' 

_ .  

W,C= (w + W e )  and the  plasma frequency. Anothqr group of slow waves 
P 

propagate from the  cyclotron frequency down t o  zero  frequency. The for-  

ward slow wave of t h e  q u a s i s t a t i c  approximation can be viewed a s  a wh i s t l e r  

propagating very c lose  t o  the  resonance cone and r e f l e c t e d  a t  the  boundary. 

Whistlers propagating a t  an angle t o  t h e  ex te rna l  magnetic f i e l d ,  a r e  

phys ica l ly  coupled t o  plasma o s c i l l a t i o n s .  Close t o  the  resonance cone, 

t he  a x i a l  electric f i e l d  dominates over t he  RF magnetic f i e l d .  Therefore, 

t he  RF magnetic f i e l d  can be neglected.  From Eq. (13, t he  r a t i o  of RF 

e l e c t r i c  f i e l d ,  E, t o  RF magnetic f i e l d ,  H, i n  a c o l l i s i o n l e s s  magneto- 

plasma, c lose  t o  t h e  resonance cone, is  given by 

&, 

where A, i s  the s i g n a l  wavelength i n  vacuum, and A is the s igna l  wave- 

length  i n  t h e  plasma. The width of the  plasma s l a b ,  a,  can be expressed 

i n  terms of t he  angle  of propagation by the f a m i l i a r  waveguide r e l a t i o n  

where m is t h e  t ransverse  mode number. For bounded magnetoplasma, due 

t o  the  secondary r e f l e c t e d  wave, m is i n  general  a f r a c t i o n a l  number. 

When 8 is  exac t ly  equal t o  

and t h e  s i z e  of t h e  waveguide would have t o  be zero  unless  8 

f 0. Thus, i n  order  t o  obta in  a predominantly elec- But, i n  general ,  

t r o s t a t i c  so lu t ion ,  we  must make 8 close t o  8 so t h a t  t h e  r e f r a c t i v e  

index becomes very l a r g e  but remains f i n i t e .  Combining Eqs. (22) and (231, 

f o r  IEl >> IR1 w e  have 

the  r e f r a c t i v e  index, p, is  i n f i n i t e ,  

is  a l s o  zero. 
'res' 

'res 

res 
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This is the condition for the validity of the quasistatic approximation. 

The condition given by Eq. (24) can be applied to both the forward and 

backward body wave modes. For the forward wave modes under the usual 

whistler conditions, w >> wc > w, Eq. (24) reduces to 
P 

For the quasistatic approximation to be valid, we need strong magnetic 

fields, and/or low plasma densities and small plasma column cross-sections. 

The approximation is also improved by increasing the mode number. 

these features agree with the results of numerical calculations shown in 

Fig. 9 (Gould 1961). 

All 
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w,a/c = 1 . 0  

2.1 

2.0 

w/w, 

--- QU AS I STAT1 C 

5.0 10.0 

- 
- ------ --------- ---- - --. ----__ --z ----==- -----__ - 

- 

47424 
I 

c k /w, 
(a 1 

47423 

ck/w, 

(b)  

FIG. 9. COMPARISON OF BODY WAVE DISPERSION CURVES IN 
MAGNETOPLASMA FILLED WAVEGUIDE CALCULATED FROM FULL 
MAXWELL EQUATIONS, AND WITH QUASISTATIC APPROXIMATION 
(Gould 19611, 
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4. DISCUSSION 

In the preceding sections, we have explained Wieder's paradox as an 

interference pattern of plane waves which double due to double reflection, 

Our analysis also connects the well-studied plane wave theory in unbounded 

plasmas directly with the theory of waves in bounded plasmas. Since cylin- 

drical waves and spherical. waves can be synthesized in terms of plane 

waves (Stratton 1941), our result applies also to cylindrical and spheri- 

cal configurations. This approach can be used for other modes, e.g., the 

backward wave which should propagate in a bounded magnetoplasma in the 

frequency range wh > w > w for w > w This mode can be related to 

the extraordinary wave in Region 5 of Fig. 1. 
P P c' 

From the point of view of plane wave reflections, the limitations of 

the quasistatic approximation for body waves in bounded magnetoplasma has 

been established. For a waveguide partially filled with plasma, surface 

wave modes may propagate. Since the energy in surface waves is concen- 

trated near the plasma boundary, the above conditions for the validity of 

the quasistatic approximation cannot be applied to them. 

waves, the usual slow wave criterion is generally adequate. 

For surface 
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